Maximum Subarray

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Example 1: Input : nums = [-2,1,-3,4,-1,2,1,-5,4] Output : 6 Explanation : [4,-1,2,1] has the largest sum = 6.

Example 2: Input : nums = [1] Output : 1

Example 3: Input : nums = [0] Output : 0

Example 4: Input : nums = [-1] Output : -1

Example 5: Input : nums = [-2147483647] Output : -2147483647

์ž๋ฃŒ๊ตฌ์กฐ ์ •์ˆ˜ ํƒ€์ž… ๋ณ€์ˆ˜ 2๊ฐœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ Math.max(a,b)๋ฅผ ์ด์šฉํ•˜์—ฌ ๋” ํฐ ๊ฐ’์„ ์ฑ„ํƒํ•œ๋‹ค. new๋ฅผ ํฌํ•จํ• ์ง€ ๋ง์ง€, new๋ถ€ํ„ฐ ๋‹ค์‹œ ์‹œ์ž‘ํ• ์ง€ ๋ง์ง€๋ฅผ ์„ ํƒํ•œ๋‹ค.

์•Œ๊ณ ๋ฆฌ์ฆ˜์„ Java๋กœ ๊ตฌํ˜„//๋ถ„ํ•  ์ •๋ณต ์ฝ”๋“œ ์ถ”๊ฐ€!

package java_basic;

public class MaxSubArray {

	public static void main(String[] args) {
		int[] nums = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
		System.out.println(maxSubArray(nums));
	}

	public static int maxSubArray(int[] nums) {
		int newSum = nums[0];
		int max = nums[0];

		for (int i = 1; i < nums.length; i++) {

			newSum = Math.max(newSum + nums[i], nums[i]);
			max = Math.max(max, newSum);
		}
		return max;
	}

	public static int maxSubArray_dp(int[] A) {
		int n = A.length;
		int[] dp = new int[n];// dp[i] means the maximum subarray ending with A[i];
		dp[0] = A[0];
		int max = dp[0];

		for (int i = 1; i < n; i++) {
			dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
			max = Math.max(max, dp[i]);
		}

		return max;
	}
}

Last updated